
Singularity in HPC

Grigory Shamov– Jun 2020
Westgrid Research Computing SummerSchool

Outline of the Workshop

• What are software containers , and what are their use cases?
Background info about Containers in HPC

(Quick?)start
• Logistics: how to connect to Cedar and submit jobs
• Get a simple Singularity container and run it!

Basic Singularity usage
• Running serial, GPU and MPI jobs as containers
• Getting containers from existing software repositories
• Building containers from recipes

Advanced Singularity usage
• More on Building containers from recipes

• (environment, keying/encryption, remote building services)

• Overlays and ephemeral temporary directories
• Running Singularity Containers as services

Materials I have used

SC19 Singularity Tutorial (very good!) from
Pawsey HPC centre, Australia

Official Sylabs Singularity Documentation
1.https://sylabs.io/guides/3.5/user-guide/
2. https://cloud.sylabs.io/
3.https://sylabs.io/guides/3.5/admin-guide/

1.https://ngc.nvidia.com/catalog/all
2.https://www.nvidia.com/en-us/gpu-cloud/

NVIDIAs NGC cloud repository and its
documentation

1.https://pawseysc.github.io/sc19-containers

DockerHub repository
1.https://hub.docker.com/

https://sylabs.io/guides/3.5/user-guide/
https://cloud.sylabs.io/
https://sylabs.io/guides/3.5/user-guide/
https://ngc.nvidia.com/catalog/all
https://www.nvidia.com/en-us/gpu-cloud/
https://pawseysc.github.io/sc19-containers
https://hub.docker.org/

Getting started with the course

• ssh -Y your_username@cedar.computecanada.ca
• salloc --account=def-training-wa --mem-per-cpu=8Gb \

--time=0-2:00:00 --reservation=wgsummer-wr_cpu

Connecting to Cedar and submitting jobs

Accounts, systems and reservations
• Reservations are prepared on Cedar (HPC)
• On Cedar users w.o Computecanada accounts can use wg-guestNN.
• UManitoba users with WG accounts can use Grex as well.

Course materials
• The workshop involves pulling a lot of data from Internet!
• If fails, try a local copy of images under /scratch/gshamov/wg-sing-ws
• Some Examples and scripts are also there.

Singularity quick start

• Submit an interactive job, login nodes might be busy and/or
resource limited.

salloc --mem-per-cpu=4gb --time=0-2:00:00 \
--cpus-per-task=2 --account= def-training-wa

• Get access to the singularity command module load
singularity/3.5 and see its options with “singularity help”

• Try printing something else than the fortune and cow. How about
“Hello world” from the Lolcow container?

Get familiar with HPC environment and

Get and run a simple “hello world” container
• The “Lolcow” container by Singularity developers.

module load singularity/3.5
singularity run docker://godlovedc/lolcow

Dealing with complexity of the
software

•Controlling software environments
•Porting effort is often needed between development
and production environments
•Want to distribute software (in a portable way).

•Building software packages predictably
•“infrastructure as a code”

•High Performance Computing:
• Reproducibility, Mobility of computing?

•One of the approaches is to isolate/containerize
software/apps together with their dependencies

Glossary: Operating systems
Operating system - All the software that let you interact with a
computer, run applications, UI, etc. ; consists of the “kernel” and “userland”
parts.

Kernel - Central piece of software that manages hardware and provides
resources (CPU, IO, memory, devices, filesystems) to the processes it is running.

Users - Linux separates access for end users, system service accounts and root.
Fine grained control (sudo, capabilities).

Program and Process - process is an instance of a running program with
resources allocated by kernel . Processes associated with users.

Daemon process - a process that runs long time, “in the background”

Filesystem – an organized collection of files. Under UNIX/Linux, single /
hierarchy exists and filesystems on different devices are “mounted” somewhere.

What a software task needs to run ?
•Hardware resources (as provided by OS kernel)
•Kernel/Systems functions and C runtime library (libc)
•“Userland” operation system
• systems libraries , scripts , services

•Application libraries it depends on
• linear algebra, file formats, parallel computing and
accelerators computing libraries

•Dynamic languages are the worst because they are dynamic
• python, R, perl, Java, might depend on each other as
part of a single research pipeline

•Can we encapsulate the above dependencies for the task?

Containers vs Virtual Machines
VMs offer true isolation via virtualized
Hardware; maximal flexibility at some
performance and space cost

• Can run any combination of host
and guest OS

• You can improve performance at
cost of losing flexibility and isolation

Containers are an OS-level mechanism of
isolating userland parts of OS together with a
given application. Tied to the OS, less flexible.

• “Chroot on steroids”; namespaces
for processes provided by the kernel.

• Security issues of sharing the same
kernel, privilege escalation

• Almost no performance overhead

source: Greg Kurtzer keynote at
HPC Advisory Council 2017 @
Stanford

http://www.hpcadvisorycouncil.com/events/2017/stanford-workshop/pdf/GMKurtzer_Singularity_Keynote_Tuesday_02072017.pdf

Docker. https://docker.com

Developed as Containers platform for services/daemons.

•Enterprise computing, Microservices approach
• Isolation of the (micro)services
• Composable containers, version control
• Load balancers
• Orchestration tools (Google Kubernetes, Docker Swarm,..)
• Many containers per node, oversubscription

•Runs as root or a service user; cgroups for resource
management

•Uses commodity, Internet network stack extensively

Very popular with software developers, DevOps; thanks to Recipes
and the huge registry at DockerHub (https://hub.docker.com)
Docker quickly made its way to Research Computing software dev.!

https://hub.docker.com/

HPC use case for containers
•In the HPC world jobs are ran in the Batch Mode

• The “queue, start, run, end” lifecycle of a computing task

•Maximal utilization of hardware

•Often long running compute tasks with large state (memory, data on disk).

•Often a whole node or many nodes per job, statically allocated.

• “Worst case” scenarios, often no resource oversubscription possible.

•Close access to hardware for speed; specialized interconnects, RDMA, direct

GPU access, zero-copy IPC

•Shared systems:

•Pretend to be a single large machine with a Scheduler, shared network FS

• The HPC users are connecting directly on the machine. Privilege
escalation is a concern.

Can we use Docker on HPC systems?

The short answer is often no.

• Security model: no root or sudo is given on shared machines
• Cgroups resource management will conflict with HPCs RM

But what if users, or developers, really want it? Containers for HPC:

• Shifter; Singularity; CharlieCloud; Sarus
• Either based on Docker or can convert from Docker image

format
• running containers in user space, as a user.
• Zero performance overhead for either of them (an SC19 paper).

Singularity
• Created first at LBNL, now developed by a company

(SyLabs) https://sylabs.io/

• The goals: mobility of compute and reproducible research with
Containers.

• Developed for HPC use case: runs as a regular user, can access
shared filesystems. Interoperable with Docker; can run services as
well.

• As of now likely the most popular container engine for HPC that is
supported
• on ComputeCanada’s HPC machines.
• by NVIDIA GPU software environment
• on CVMFs collaborative environments (ATLAS, OSG)
• on some public clouds (MS Azure batch etc.)

https://sylabs.io/

Back to the Lolcow demo!
•What is the relation/difference between ”container” and “image”?

•Singularity command offers the following actions commands

• singularity run

• singularity exec

• singularity shell

•(also, “singularity instance” group of commands)

•What is the difference between “run” and “exec”?

•We can inspect images with “singularity inspect”

• By default, to check the metadata, tags etc.

• Can also see the recipe (for native Sing. Images) and run script with

• singularity inspect --deffile and singularity inspect --runscript.

• Docker images are portable “layers” while Singularity image is a single file

Basic usage : R containers
• R is a popular dynamic scientific language with many packages and several

repositories (CRAN, Bioconductor, etc.). Some packages are hard to maintain and

install so a natural target for containerization.

•The Rocker Project maintains a number of docker://rocker/ images . On dockerHub:

• docker://rocker/r:latest

• docker://rocker/tidyland:latest

• docker://rocker/rstudio:latest

• It supports singularity: https://www.rocker-project.org/use/singularity/

•DEMO: lets pull some containers and run R examples.

session-info.R and R-benchmark-25.R

•DEMO: lets try R INLA tutorial? isbaspde.R from :

•http://www.r-inla.org/examples/tutorials/spde-from-the-isba-bulletin

https://www.rocker-project.org/use/singularity/
http://www.r-inla.org/examples/tutorials/spde-from-the-isba-bulletin

Pulling the containers
Lets start with pulling an R image. (Things to consider on CC systems: network and
FS performance; memory and threads to pack/unpack the container). singularity
pull is the command. https://hub.docker.org is the Registry.

singularity pull docker://rocker/tidyland:latest

•The Images are cached , under $HOME/singularity

•Docker layers are cached too.

•We can control the cache location with SINGULARITY_CACHE environment (and
SINGULARITY_TMP); /scratch/$USER might be better if $HOME is full.

• singularity cache {list|clean} commands are used to manage the cache.

• singularity inspect shows the image’s metadata ; --runscript, --deffile options for
SIF images are useful.

https://hub.docker.org/

Repositories to pull containers from:
Public containers repositories from where to “pull” or “build” containers use the
following URI

•First, the DockerHub public registry. docker:// ; a RedHat repo quay.io/ has some
science stuff; NVIDIA NGC has docker images.

•SyLabs cloud library, native SIF images: library://

•SingularityHub, native SIF images: shub://

Private Docker repositorie qequire authentication. singularity pull --docker-login
docker://your-private-repo/container:tag

CVMFS distributions! They distribute container images in an unpacked directory
format. CVMFS handling various optimizations and caching of this format.

•OpenScienceGrid: https://opensciencegrid.org/docs/worker-node/install-singularity/

https://opensciencegrid.org/docs/worker-node/install-singularity/

Running containers, access to FS

Access to filesystems using --bind | -B options to action commands:

•Bind-mount is a Linux kernel mechanism. -B outside:inside
•Some paths are mounted by default. /home , /tmp, $(pwd)
•Sysadmin can configure more/less paths by default
•You can prevent mounting the default paths by --containall

singularity exec -B /scratch:/scratch tidyverse-latest.sif Rscript session-info.R

If you have a) Singularity container image, and b) Singularity runtime installed,
you can run your app in the container in them.

./my-app [options] my-input.dat

[singularity command] [singularity-options] ./container.sif [options] input.dat

For example, singularity run ./lolcow.sif (or just ./lolcow.sif)

Or singularity exec lolcow.sif echo “Hello, World!”

Running containers, access to
environment variables

Environment variables are key-value pairs that are passed to a running process by OS.
Some of them are very influential system-wide (PATH, LD_LIBRARY_PATH, CPATH, etc.).
Some are used by a particular code only (PETSC_DIR).

• Singularity inherits environment from the build/pull time

• Building recipe might define some env vars explicitly in the %environment section

• At run time, passing variables to container can be done by prefixing their names with
SINGULARITYENV_

• A flag --cleanenv prevents form inheriting the environment.

Exercise: do “singularity exec ” for the command “env” with and without the --cleanenv
flag. More information:

https://sylabs.io/guides/3.5/user-guide/environment_and_metadata.html

https://sylabs.io/guides/3.5/user-guide/environment_and_metadata.html

Building your own containers
In case of R-INLA we could not find a suitable Docker or Singularity image, so we had
to build it. The process is like for Docker, based on a text file “recipe” that will define
the container image.

The command is “singularity build {target} {source}”. Note that source might be:

• a Singularity recipe, which is a text file like for Docker

• a container repository URI (then “build” is like “pull”)

• another Singularity container image.

Singularity 3.x has two main image formats: the compressed image (SIF) and the
Sandbox directory. Building a new container can be interactive process with shell –
writable and sandbox format very useful to fix things; however, it is a good practice
to capture everything in the (final) recipe.

Building a new container often would require encapsulation of OS userland parts that
require root access and root ownership: so in many cases the local build needs sudo!

Singularity recipe examples
1. Specifies from where to Bootstrap
from something (OS repo, docker, etc.)

2. Modifies the container in %post,
copies %files

3. Sets the %environment

4. Defines entry point in %runscript

Sylabs documentation:

https://sylabs.io/guides/3.5/user-guide/definition_files.html

More examples on Github
https://github.com/sylabs/singularity/blob/master/examples

Bootstrap: docker
From: rocker/r-ver:latest
%post

apt-get update -y
apt-get install -y libssl-dev libsasl2-dev\

jags autoconf automake curl wget\
libudunits2-dev bash libicu-dev libeigen3-dev \

gcc-multilib g++-multilib
generic R packages
R -e "install.packages('ggplot2')"
skipped a few packages
R -e "install.packages('R2jags')"
#R2OpenBUGS
wget http://pj.freefaculty.org/Ubuntu/15.04/amd64/
tar xzf openbugs_3.2.3.orig.tar.gz
cd openbugs-3.2.3
./configure
make && make check && make install
R -e "install.packages('R2OpenBUGS')"

https://sylabs.io/guides/3.5/user-guide/definition_files.html
https://github.com/sylabs/singularity/blob/master/examples

Remote building services: no sudo!
The original build service: V. Sochat’s SingularityHUB

•Link your Github repo with recipe to https://singularity-hub.org ; wait for it to build;
setup auto rebuild hooks.

•Pull the container from anywhere like so (putting your URI of course): singularity
pull shub://vsoch/hello-world

•Right now locked down due to an abuse by a malicious user; limits are set for the
number of downloads per client.

The new SyLabs Cloud service fro Singularity 3.x

•Register with an identity provider (Google, FB, MS, Github) at https://cloud.sylabs.io ;
Get an access token and do “singularity remote login” to enter it.

•Use singularity build --remote CLI option from a local Singularity installation or deposit a
recipe using the SyLabs Cloud web interface. EXERCISE: try remote building the Lolcow.

•Documentation: https://sylabs.io/guides/3.5/user-guide/endpoint.html

https://singularity-hub.org/
https://cloud.sylabs.io/
https://sylabs.io/guides/3.5/user-guide/endpoint.html

Running containers on GPUs
Singularity supports Nvidia GPUs through bind-mounding the GPU drivers and base
CUDA libraries. The --nv flag does it transparently to the user. For example,

singularity exec --nv -B /scratch:/mnt tensorflow.sif python my-tf.py

•NVidia NGC provides readily made containers for a large number of HPC apps.

• https://ngc.nvidia.com/catalog/containers

EXERCISE1 : lets run GAMESS-US binary from Nvidia NGC in an interactive SLURM job.
• Do salloc command to get a GPU compute node (--gres=gpu:p100:1 or –

gres=gpu:v100:1 as described here:
https://docs.computecanada.ca/wiki/Using_GPUs_with_Slurm#On_Cedar

salloc --gres=gpu:p100:1 --cpus-per-task=8 --mem=40Gb --time=0-2:00:00 \
--account=def-training-wa --reservation=wgsummer-wr_gpu

• Do pull the GAMESS-US container and run an example following instructions here:
https://ngc.nvidia.com/catalog/containers/hpc:gamess

https://ngc.nvidia.com/catalog/containers
https://docs.computecanada.ca/wiki/Using_GPUs_with_Slurm
https://ngc.nvidia.com/catalog/containers/hpc:gamess

Running containers on GPUs
•NVidia NGC provides readily made containers for a large number of HPC apps.

• https://ngc.nvidia.com/catalog/containers

EXERCISE 2a : lets run the single node NAMD binary from Nvidia NGC in an interactive
SLURM job.

1. Do the salloc command to get a GPU compute node (--gres=gpu:p100:1 or –
gres=gpu:v100:1 as described here:
https://docs.computecanada.ca/wiki/Using_GPUs_with_Slurm#On_Cedar

salloc --gres=gpu:p100:1 --cpus-per-task=8 --mem=40Gb --time=0-2:00:00 \
--account=def-training-wa --reservation=wgsummer-wr_gpu

Pull the NAMD container and run an example following instructions here:
https://ngc.nvidia.com/catalog/containers/hpc:namd

EXERCISE 2b: Lets run a multimode NAMD binary as a batch SLURM job, using the
multimode NAMD image and the example SLURM job script as provided.

https://ngc.nvidia.com/catalog/containers
https://docs.computecanada.ca/wiki/Using_GPUs_with_Slurm
https://ngc.nvidia.com/catalog/containers/hpc:namd

Singularity and MPI applications
MPI is a standard; for message passing interface. MPI comes with several
implementations (OpebnMPI, MPICH, IntelMPI, PlatformMPI, Cray MPI, ..)

MPI libraries on HPC systems usually are using a high-performance interconnect, RDMA
etc. which rely on variety of kernel device drivers and low level userland libraries, so they
are hard to containerize. Thus no generic --mpi flag is easy to implement for the
containers.

The Sylabs documentation page (https://sylabs.io/guides/3.5/user-guide/mpi.html)
covers it in more detail.

Intel MPI provides a knowledge base page on using Singularity ()

Less of a use case? Most MPI software in HPC world comes as sources.

However, MPI+X model might be useful (try GAMESS-US with MPI with GPU, or
LAMMPS+GPU, etc.).

https://sylabs.io/guides/3.5/user-guide/mpi.html

Singularity and MPI applications
The following modes can be thought of::

1. MPI inside of the container (less interesting, won’t work across the nodes); the code is
built singularity exec my.simg mpiexec hello.mpi

2. The Hybrid mode: same (or similar) MPI inside and outside of the container. The
software is built against the container’s MPI. mpiexec singularity exec hello.mpi

3.The Bind mode: host’s MPI libraries and drivers are mounted into the container; the
applicaton has to be built against the . Mpiexec singularity exec –B /paths/to/mpi
hello.mpi

EXERCISE: build a hybrid or bind-mode MPI application and benchmark the performance.

TODO

Advanced topics: writable overlays
If you really a writable container layer, there is a new development feature, writable
overlays. The overlay “layers” on top of the (immutable) SIF image and allows for
changes without rebuilding the image. The overlay can be

• A sandbox directory.

• A writable ext3 filesystem image. To be created with mkfs.ext3 first.

• A writable ext3 image embedded in the SIF file.

The command : singularity shell --overlay name_of_overlay name_of_image.sif

Unfortunately, there are too many limitations to use it on current ComputeCanada
systems. It either needs sudo, or needs userIDs less than 65535 (use the id command to
see yours) or needs a newer Linux kernel than available on CentOS 7.

•Documented at SyLabs site:

https://sylabs.io/guides/3.5/user-guide/persistent_overlays.html

https://sylabs.io/guides/3.5/user-guide/persistent_overlays.html

Advanced topics: services
If you really need to run a daemon / service with Singularity as if it was Docker.

•The command is singularity instance (singularity instance start http.sif my-web)

•Instead of %runscript, the %startscript section is used to define the containers’ action.

•It can use its own Cgroups mechanism (--cgroups flags) to manage the resources.

•It can run in a privileged mode, as root, with fine-grained capabilities. (--addcap)

•Documented at SyLabs site:

• https://sylabs.io/guides/3.5/user-guide/running_services.html

https://sylabs.io/guides/3.5/user-guide/running_services.html

A service example, Rstudio
• An example of service can be Viz/GUI on a compute node. It is just an

example and not necessarily the recommended way to run Rstudio on
Cedar!

• The workflow would more or less follow the ComputeCanada’s doc here:
• https://docs.computecanada.ca/wiki/Jupyter#Connecting_to_Jupyter_Notebook and

https://www.rocker-project.org/use/singularity/
• Start the server container instance (Rstudio server) inside a SLURM job, on a compute node
• Set up an SSH tunnel to the compute node
• Connect via the SSH tunnel using your browser at localhost:port using the credentials from

the SLURM job
• When work done, cancel the SLURM job on the compute node

• To start the server, we’d need a container image built and started.
• Actually, a batch container will do as well, but our purpose is to demonstrate the services.
• A container based on rocker/tydyr and defining the port and password as described on the

Rocker pages above: I called it rocker-server.sif. It has the %startscript as follows:
%startscript
export R_PORT=${R_PORT:-"8787” R_ADDRESS=${R_ADDRESS:-"0.0.0.0"}
rserver --www-port $R_PORT --www-address $R_ADDRESS --auth-none=0 \

--auth-pam-helper-path=pam-helper

https://docs.computecanada.ca/wiki/Jupyter
https://www.rocker-project.org/use/singularity/

A service example, Rstudio
• Get an interactive job, on Cedar:
salloc --mem=4gb --cpus-per-task=1 --account=def-training-wa
• Start the container instance (named myserver) defining the port (pick one

above 1000) and a password. The user will be current user.
R_PORT=8765 PASSWORD=dodo singularity instance start \

-c rstudio-server.sif myserver
Check the instance status; you can also execute commands there:
singularity instance list
singularity exec instance://myserver echo $USER
Make the tunnel, on your client machine. This one’s for Mac
ssh -L 8765:cdr767.int.cedar.computecanada.ca:8765 \
gshamov@cedar.computecanada.ca
Point a browser to http://localhost:8765 and use the user/password. When
done, terminate the instance with singularity instance stop myserver

Questions?

