

1

GROMACS simulation optimisation

WestGrid 2020 Summer School
https://wgschool.netlify.app/

2020-06-15

Olivier Fisette olivier.fisette@usask.ca
Advanced Research Computing, ICT

University of Saskatchewan
https://wiki.usask.ca/display/ARC/

CC BY 4.0

https://wgschool.netlify.app/
mailto:olivier.fisette@usask.ca
https://wiki.usask.ca/display/ARC/

2

Presentation

● What is this session about?

– Maximising the performance and throughput of MD simulations
performed with GROMACS

– Understanding how GROMACS accelerates and parallelises
simulations

● Intended audience

– You have already performed MD simulations with GROMACS.

– You do not have a deep knowledge of GROMACS’ architecture.

● The topics will be mostly technical rather than scientific, but the two
cannot be separated entirely.

● The slides and a pre-recorded presentation are available online.

● An interactive Zoom session will be held at 11:00-13:00 PDT to allow
attendees to ask their questions.

3

Contents

● Motivation

● Basics of parallel performance

● The limitations of non-bonded
interactions

● GROMACS parallelism

– Domain decomposition

– Shared memory parallelism

– Hardware acceleration (CPU)

● Optimising a simulation in
practice

● GROMACS and GPUs

● Tuning non-bonded interactions

● Integrator tricks

● Concluding remarks

● References

● Annex: example MDP file for
recent GROMACS

4

Motivation

● Why do we care about the performance of our MD simulations?

– More simulation time means better sampling of biological events.

5

Motivation

● Why do we care about the performance of our MD simulations?

– More simulation time means better sampling of biological events.

Libration

10-12 10-9 10-6 10-3 100 103 s

Side-chain rotation

Vibration

Allosteric regulation

Folding/Unfolding

Catalysis

Ligand binding

10-15

Rotational diffusion

H transfer / H bonding

1977 1995 2008 2010 First MD (year)

Biological event timescales

Fisette et al. 2012 J. Biomed. Biotechnol.

6

Motivation

● Why do we care about the performance of our MD simulations?

– More simulation time means better sampling of biological events.

● How do make GROMACS faster?

– We use several CPUs in parallel.

– We use GPUs.

● When using CPUs in parallel, there is a loss of efficiency (e.g. doubling
the number of CPUs does not always double the performance).

1. How do we measure efficiency?

2. Why does efficiency decrease?

3. How do we avoid or limit loss of efficiency?

4. How can we best configure our simulations to use multiple CPUs?

7

Speedup and efficiency

● Speedup (S) is the ratio of serial over parallel execution time (t)

– Example: running a program on a single CPU core takes 10 minutes
to complete, but only 6 minutes when run on 2 cores; the speedup
is 1.67.

● Efficiency (η) is the ratio of speedup over number of parallel tasks (s)

– Example: A 1.67 speedup on 2 cores yields an efficiency of 0.835,
or 83.5 %.

– When the speedup is equal to the number of parallel tasks (S = s),
the efficiency is said to be linear (η = 1.0).

S=
t serial
t parallel

η=
S
s
=
t serial
t parallel s

8

How well does GROMACS scale?

● Rule of the thumb: the scaling limit is
~100 atoms / CPU core.

– At that point, adding more CPUs
will not make your simulation go
any faster.

– Efficiency decreases long before
that!

● Efficiency depends on system size,
composition, and simulation
parameters.

● To avoid wasting resources, you should
measure scaling for each new
molecular system and parameter set.

0

10

20

30

40

50

0 100 200 300 400 500 600

P
er

fo
rm

an
ce

[n
s/

da
y]

Number of cores

Li
ne

ar
 s

ca
lin

g

Gromacs scaling on SuperMUC
~ 150 000-atom simulation

~ 300
atoms/core

9

Why are MD simulations so computationally expensive?

● Most time in MD simulations is
spent computing interatomic
potentials from the force field.

● Non-bonded interactions are
the bulk of the work.

– Adding one atom to a 1000-
atom system adds 0 to 3
new bonds.

– Adding one atom to a 1000-
atom system adds 1000 new
non-bonded pairs!

– Complexity grows
quadratically with the
number of atoms: O(n2)

– Clearly, this is not
sustainable!

V = ∑
bonds

k b(b−b0)
2

+ ∑
angles

kθ(θ−θ0)
2

+ ∑
dihedrals

k ϕ[1+cos (nϕ−δ)]

+ ∑
impropers

kω(ω−ω0)
2

+ ∑
VdW
ε [(
rmin
r)

12

−(
rmin
r)

6

]

+ ∑
Coulomb

q iq j
ke r

10

Neighbour lists make large simulations possible

● Only non-bonded interactions
between atoms that are close
are considered.

– Potentials between atoms
farther apart than a cut-off
(e.g. 10 Å) are not computed.

● Long-range electrostatics are
computed with Particle Mesh
Ewald (PME).

● Neighbour lists are used to keep
track of atoms in proximity.

– These lists are updated as
the simulation progresses.

– GROMACS uses Verlet lists.

● Complexity becomes O(n log(n))

11

Overview of GROMACS parallelism

● GROMACS uses a three-level
hybrid parallel approach.

– All levels are independent.

– All levels can be used
together.

● This allows GROMACS to take
full advantage of modern
supercomputers and be very
flexible at the same time.

● It requires the user to
understand how the program
works and to pay attention.

Le
ve

l 1

Sp
at

ia
l D

D
Le

ve
l 2

Sh

ar
ed

 m
em

or
y

Le
ve

l 3

H
ar

dw
ar

e

PP rank

CPU thread

SIMD op.

GPU core

PME rank

CPU thread

GPU core

SIMD op.

12

Spatial domain decomposition

● Let us consider a water box as
our MD system.

● When performing an MD
simulation on single CPU core,
that core is responsible for all
non-bonded potentials

– Short-range interactions
(using cut-offs and
neighbour lists)

– Long-range interactions
(using PME)

13

Spatial domain decomposition

● One strategy to use several CPU
cores is to break up the system
into smaller cells.

● GROMACS performs this
domain decomposition (DD)
using MPI.

● Some MPI ranks compute short-
range particle-particle potentials
(PP ranks).

● Other MPI ranks compute long-
range electrostatics using PME
(PME ranks).

● Domain decomposition can be
performed in all three
dimensions (2D case shown).

PME rank PME rank

PP rank PP rank PP rank

PP rank PP rank PP rank

PP rank PP rank PP rank

PP rank PP rank PP rank

14

Spatial domain decomposition

● Each PP rank is responsible for a
subset of atoms.

● Adjacent PP ranks need to
exchange information

– Potential between nearby
atoms

– Atoms that move from one
cell to another

● Non-adjacent PP ranks do not
exchange information

– Communication is minimised

● GROMACS optimises the way
cells are organised and the ranks
between PP and PME
automatically. PME rank PME rank

PP rank

15

Spatial domain decomposition

Advantages

● Can distribute a simulation on
many compute nodes

– It is the only way to run a
GROMACS simulation on
several nodes.

● Performs very well for large
systems (~1000 atoms per
domain or more)

● Minimises the necessary
memory per CPU

– Better use of CPU cache.

Disadvantages

● Adds a significant overhead

– Sometimes not worth it for
single-node simulations

● Performs poorly for small
systems

– There is a limit to how small
DD cells can be…

● Requires a fast network
interconnect

– InfiniBand and OmniPath are
appropriate.

– Ethernet is too slow.

16

Spatial domain decomposition

#!/usr/bin/env bash

#SBATCH --nodes=1
#SBATCH --ntasks-per-node=32

Using one full 32-core node

module load gcc/7.3.0
module load openmpi/3.1.2
module load gromacs/2020.2

srun gmx_mpi mdrun

17

Spatial domain decomposition

#!/usr/bin/env bash

#SBATCH --nodes=2
#SBATCH --ntasks-per-node=32

Using two full 32-core nodes

module load gcc/7.3.0
module load openmpi/3.1.2
module load gromacs/2020.2

srun gmx_mpi mdrun

18

Spatial domain decomposition

#!/usr/bin/env bash

#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8

Using only 8 cores on a single node (very small
systems may not scale well to a full node)

module load gcc/7.3.0
module load openmpi/3.1.2
module load gromacs/2020.2

srun gmx_mpi mdrun

19

Spatial domain decomposition

#!/usr/bin/env bash

#SBATCH --nodes=2
#SBATCH --ntasks-per-node=8

BAD: Using 2 nodes and 16 cores, 8 cores on each
node. This will be slower than 16 cores on a
single node. Always use full nodes in multi-node
jobs.

module load gcc/7.3.0
module load openmpi/3.1.2
module load gromacs/2020.2

srun gmx_mpi mdrun

20

Spatial domain decomposition

#!/usr/bin/env bash

#SBATCH --ntasks=32

BAD: Using 32 CPU cores that could be spread on
many nodes. Always specify the number of nodes
explicitly.

module load gcc/7.3.0
module load openmpi/3.1.2
module load gromacs/2020.2

srun gmx_mpi mdrun

21

Spatial domain decomposition

$ cat md.log
...
MPI library: MPI
...
Running on 2 nodes with total 80 cores, 80 logical cores
 Cores per node: 40
...
Initializing Domain Decomposition on 80 ranks
Will use 64 particle-particle and 16 PME only ranks
Using 16 separate PME ranks, as guessed by mdrun
...
Using 80 MPI processes
...
NOTE: 11.1 % of the available CPU time was lost due to
load imbalance
...
NOTE: 16.0 % performance was lost because the PME ranks
had more work to do than the PP ranks.
...

22

Shared memory multiprocessing

● Let us consider a molecular system or a DD cell inside that system.

● Several CPU cores can work simultaneously to compute the inter-
atomic potentials in that system or sub-system.

● All involved CPU cores need access to the same atom positions, i.e.
the cores share access to the memory where positions are stored.

● GROMACS uses OpenMP threads for this shared memory parallelism.

● OpenMP threads can compute PP interactions, PME, or both.

● The system (or sub-system) is not split like it is with DD.

23

Shared memory multiprocessing

Advantages

● Small computational overhead

● Usually works well on a single
node

● Performs better than MPI DD
for small systems (less than
1000 atoms per core)

Disadvantages

● Uses more memory per core
compared to MPI DD

– Less efficient use of CPU
cache

● Cannot distribute the workload
over several compute nodes

– But it can be used in
conjunction with MPI DD
across many nodes

24

Shared memory multiprocessing

#!/usr/bin/env bash

#SBATCH --ntasks=1
#SBATCH --cpus-per-task=32

Using one full 32-core node

module load gcc/7.3.0
module load openmpi/3.1.2
module load gromacs/2020.2

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx mdrun

25

Shared memory multiprocessing

#!/usr/bin/env bash

#SBATCH --ntasks=1
#SBATCH --cpus-per-task=8

Using only 8 cores on a single node (very small
systems may not scale well to a full node)

module load gcc/7.3.0
module load openmpi/3.1.2
module load gromacs/2020.2

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx mdrun

26

Shared memory multiprocessing

$ cat md.log
...
OpenMP support: enabled (GMX_OPENMP_MAX_THREADS = 64)
...
Running on 1 node with total 40 cores, 40 logical cores
...
Using 40 OpenMP threads
...

27

Using both spatial DD and shared memory

● Spatial domain decomposition
(MPI ranks) can be used in
combination with shared
memory multiprocessing
(OpenMP threads).

● MPI is the “1st level” of
parallelism, and “sits atop”
OpenMP.

● Each MPI rank “controls” the
same number of OpenMP
threads.

Le
ve

l 1

Sp
at

ia
l D

D
Le

ve
l 2

Sh

ar
ed

 m
em

or
y

Le
ve

l 3

H
ar

dw
ar

e

PP rank

CPU thread

SIMD op.

GPU core

PME rank

CPU thread

GPU core

SIMD op.

28

Using both spatial DD and shared memory

Advantages

● Can use more CPU cores in
parallel without performing
more DD

– Sometimes provides
increased performance

– DD cannot be done
indefinitely

Disadvantages

● Slightly more complex to set up

– The number of threads per
rank has to be fine-tuned.

● Has the overhead of both
methods

– Sometimes not as fast as
pure MPI or OpenMP

29

Using both spatial DD and shared memory

#!/usr/bin/env bash

#SBATCH --nodes=1
#SBATCH --ntasks-per-node=16
#SBATCH --cpus-per-task=2

Using one full 32-core node with 16 MPI ranks
and 2 OpenMP threads per MPI rank

module load gcc/7.3.0
module load openmpi/3.1.2
module load gromacs/2020.2

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx_mpi mdrun

30

Using both spatial DD and shared memory

#!/usr/bin/env bash

#SBATCH --nodes=2
#SBATCH --ntasks-per-node=16
#SBATCH --cpus-per-task=2

Using two full 32-core nodes with 32 MPI ranks
and 2 OpenMP threads per MPI rank

module load gcc/7.3.0
module load openmpi/3.1.2
module load gromacs/2020.2

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx_mpi mdrun

31

Using both spatial DD and shared memory

#!/usr/bin/env bash

#SBATCH --nodes=2
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=32

BAD: Using two full 32-core nodes with 2 MPI
ranks and 32 OpenMP threads per MPI rank. The
optimal number of threads per rank is usually
between 2 and 6.

module load gcc/7.3.0
module load openmpi/3.1.2
module load gromacs/2020.2

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx_mpi mdrun

32

Using both spatial DD and shared memory

$ cat md.log
...
MPI library: MPI
OpenMP support: enabled (GMX_OPENMP_MAX_THREADS = 64)
...
Running on 2 nodes with total 80 cores, 80 logical cores
 Cores per node: 40
...
The number of OpenMP threads was set by environment variable
OMP_NUM_THREADS to 2
...
Initializing Domain Decomposition on 40 ranks
Will use 32 particle-particle and 8 PME only ranks
Using 8 separate PME ranks, as guessed by mdrun
...
Using 40 MPI processes
Using 2 OpenMP threads per MPI process
...
NOTE: 5.5 % of the available CPU time was lost due to load
imbalance
...
NOTE: 34.1 % performance was lost because the PME ranks
had more work to do than the PP ranks.
...

33

Hardware-based acceleration

● Modern CPUs are able to apply
the same operations to multiple
data points simultaneously,
using specialised hardware.

● This is known as “single
instruction, multiple data”
(SIMD).

● Intel CPUs support the AVX,
AVX2 and AVX512 instruction
sets that allow programmers to
achieve this hardware-level
parallelism.

● GROMACS has code to
compute short-range potentials
using AVX, AVX2, AVX512 and
similar technologies.

Le
ve

l 1

Sp
at

ia
l D

D
Le

ve
l 2

Sh

ar
ed

 m
em

or
y

Le
ve

l 3

H
ar

dw
ar

e

PP rank

CPU thread

SIMD op.

GPU core

PME rank

CPU thread

GPU core

SIMD op.

34

Hardware-based acceleration

● GROMACS routines for hardware acceleration must be chosen at
compilation time.

● On CC clusters, GROMACS is already optimised for you.

● There is nothing special for you to do at run-time.

$ cat md.log
SIMD instructions: AVX_512
...
Number of AVX-512 FMA units: 2
...
Highest SIMD level requested by all nodes in run:
AVX_512
SIMD instructions selected at compile time:
AVX_256
This program was compiled for different hardware than
you are running on,
...

35

Hardware-based acceleration

● AVX support on the CC clusters

– Béluga
● All compute nodes support AVX512
● The default software stack is built for AVX512

– Cedar and Graham
● All compute nodes support AVX2 (Broadwell)
● Some nodes also support AVX512 (Skylake, Cascade Lake)
● The default software stack is built for AVX2
● The AVX512 software stack can be loaded manually

● Tests performed with GROMACS on Skylake and Cascade Lake nodes
show a 20–30 % performance increase when using the AVX512
software stack.

● You can ask for AVX512-capable nodes, but your wait time in the
queue will likely be longer.

36

Hardware-based acceleration

#!/usr/bin/env bash

#SBATCH --nodes=1
#SBATCH --ntasks-per-node=48
#SBATCH --constraint=skylake|cascade

module load arch/avx512
module load gcc/7.3.0
module load openmpi/3.1.2
module load gromacs/2020.2

srun gmx_mpi mdrun

37

Optimising a GROMACS simulation in practice

● Make short tests (~10 ps, adjust to get at least 5 minutes of runtime).

dt = 0.002 ; 2 fs
nsteps = 5000 ; 10 ps

● Deactivate output to avoid I/O skewing the results.

nstxout-compressed = 0
nstlog = 0
nstenergy = 0

● Get the performance from the log file (in ns/day).

● Repeat all tests at least three times.

– Use the average performance.

– Verify that the deviation between the runs is small.

38

Optimising a GROMACS simulation in practice

1. Start with a serial run (single CPU core).

#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1

2. Increase the number of cores progressively (2, 4, 8, 16…) until you
occupy all cores on the node.

#SBATCH --nodes=1
#SBATCH --ntasks-per-node=32

3. Compute the speed-up for each configuration.

4. Compute the efficiency for each configuration.

S=
t serial
t parallel

=
pparallel

pserial

η=
S
s
=t serial

39

Optimising a GROMACS simulation in practice

● If efficiency is still acceptable on a full node:

1. Increase the number of nodes progressively (2, 4, 8, 16) until
efficiency becomes low.

#SBATCH --nodes=2
#SBATCH --ntasks-per-node=32

2. Once you have chosen an optimal number of nodes, try using
OpenMP threads in combination with MPI.

#SBATCH --nodes=4
#SBATCH --ntasks-per-node=16
#SBATCH --cpus-per-task=2

● If efficiency is not acceptable on a full node, repeat your tests using
OpenMP instead of MPI.

40

Using GPUs with GROMACS

● GROMACS can use GPUs to accelerate certains operations such as
evaluating short-range non-bonded interactions.

– Much like SIMD on CPUs

● Because GPUs are massively parallel, they are well suited to MD
simulations and can be faster than CPUs, especially on single-node
jobs.

● However, GROMACS has excellent CPU performance and using
multiple GPUs, especially on several nodes, is often not faster than
using only CPUs.

● GPUs offer massively increased throughput, i.e. the total amount of
simulation time you can perform, but they do not always increase the
speed of a single simulation, i.e. performance.

● GROMACS ties each GPU to an MPI rank, i.e. there should be as many
MPI ranks as GPUs. Each MPI rank can still make use of OpenMP
threads.

41

Using GPUs with GROMACS

#!/usr/bin/env bash

#SBATCH --cpus-per-task=8
#SBATCH --gres=gpu:v100l:1

Using 1/4 of the cores and one of the 4 GPUs
on a single node (Cedar V100L GPUs).

module load gcc/7.3.0
module load cuda/10.0.130
module load openmpi/3.1.2
module load gromacs/2020.2

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx mdrun

42

Using GPUs with GROMACS

#!/usr/bin/env bash

#SBATCH --nodes=1
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=8
#SBATCH --gres=gpu:v100l:4

Using all cores and 4 GPUs on a single node
(Cedar V100L GPUs).

module load gcc/7.3.0
module load cuda/10.0.130
module load openmpi/3.1.2
module load gromacs/2020.2

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx_mpi mdrun

43

Using GPUs with GROMACS

#!/usr/bin/env bash

#SBATCH --nodes=2
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=8
#SBATCH --gres=gpu:v100l:4

Using all cores and 8 GPUs on two nodes
(Cedar V100L GPUs).

module load gcc/7.3.0
module load cuda/10.0.130
module load openmpi/3.1.2
module load gromacs/2020.2

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx_mpi mdrun

44

Using GPUs with GROMACS

$ cat md.log
...
GPU support: CUDA
...
Running on 2 nodes with total 64 cores, 64 logical
cores, 8 compatible GPUs
...
On host cdr2546.int.cedar.computecanada.ca 4 GPUs
selected for this run.
...
Using 8 MPI processes
...
Using 8 OpenMP threads per MPI process
...

45

Optimising a GROMACS simulation on GPUs in practice

1. Start with a single GPU and the corresponding number of cores. (Get
the number of cores by dividing the total number of cores by the total
number of GPUs on a node.)

2. Increase the number GPUs and cores until you use all GPUs on a node.

3. Try using multiple nodes.

46

Tuning non-bonded interactions

● In modern MD simulations, non-bonded interactions are typically split
into two parts:

– VdW and short-range electrostatics, computed in real space
(GROMACS uses optimised CPU SIMD or GPU routines)

– Long-range electrostatics, computed in reciprocal space using
Particle Mesh Eward (GROMACS uses an optimised FFT library)

● By changing cut-offs and grid spacing, the balance between these two
can be tuned. Longer cut-offs and a larger grid spacing mean more
short-range work, while shorter cut-offs and a smaller grid spacing
mean more long-range work.

● GROMACS balances short- and long-range interactions automatically.
It is not necessary or useful to define cut-offs or the grid spacing.

● Verlet lists do not need to be updated often (nstlist parameter).
GROMACS ensures their accuracy dynamically. A large nstlist is
important with GPUs.

47

Tuning non-bonded interactions

$ cat grompp.mdp
...
; Non-bonded parameters
PBC = XYZ
cutoff-scheme = Verlet
nstlist = 50
Coulombtype = PME
VdWtype = cut-off
VdW-modifier = potential-shift-Verlet
dispcorr = enerpres
...

48

Integrator frequency

● The fastest motions in an MD simulation are usually X–H vibrations.

– 10-fs timescale

– Require a 1-fs integrator

● Usually, we constrain X–H bonds to remove these motions.

– Allows for a 2-fs integrator

– We use rigid water models (TIP, SPC) anyway.

● The integrator can even be increased to 4 fs. In such schemes, all
bonds are rigid, and there is a trade-off between speed and accuracy.

– Virtual sites for hydrogens

– Mass repartitioning

– United-atom force fields

– RESPA integrators

49

Concluding remarks

● Always read your log files: GROMACS is very informative…

● Optimise every time you make a new system, unless the system is very
similar to another you already optimised.

● Multiple smaller trajectories are easier and faster to acquire than a
single long one.

– What motions are you interested in?

– A single call to gmx mdrun can run multiple simulations on nearly
arbitrary resources, including several simulations on a single GPU
(see the -multidir option).

– Replica exchange MD (REMD/REST) can accelerate sampling using
multiple “replica” simulations instead of a single longer simulation.

● Read the release notes when changing GROMACS version. Despite
being mature software, GROMACS is still in active development.

50

References

● CC Doc: GROMACS

https://docs.computecanada.ca/wiki/GROMACS

● GROMACS documentation

http://manual.gromacs.org/

● Annex: MDP file for recent GROMACS versions

● S. Páll M. Abraham, C. Kutzner, B. Hess, E. Lindahl. Tackling Exascale
Software Challenges in Molecular Dynamics Simulations with
GROMACS. Solving Software Challenges for Exascale, Springer
International Publishing, 2015, 8759, 3–27.

● C. Kutzner, S. Páll, M. Fechner, A Esztermann, B.L. de Groot, H.
Grubmüller. Best bang for your buck: GPU nodes for GROMACS
biomolecular simulations. J. Comput. Chem., 2015, 36(26): 1990–2008.

https://docs.computecanada.ca/wiki/GROMACS
http://manual.gromacs.org/

51

Annex: Example grompp.mdp for recent GROMACS

; Output control
nstxout-compressed = 5000 ; 10 ps
nstlog = 5000
nstenergy = 5000

; Integrator settings
integrator = md
tinit = 0
dt = 0.002 ; 2 fs
nsteps = 500000000 ; 1 us

; Bonded parameters
constraints = h-bonds
LINCS-iter = 1
LINCS-order = 4

52

Annex: Example grompp.mdp for recent GROMACS

; Non-bonded parameters
PBC = XYZ
cutoff-scheme = Verlet
nstlist = 50
Coulombtype = PME
VdWtype = cut-off
VdW-modifier = potential-shift-Verlet
dispcorr = enerpres

; Temperature coupling
tcoupl = v-rescale
tc-grps = Protein Water_and_ions
tau-t = 0.1 0.1
ref-t = 300 300

53

Annex: Example grompp.mdp for recent GROMACS

; Pressure coupling
pcoupl = Berendsen
tau-p = 2.0
pcoupltype = isotropic
compressibility = 4.5e-5
ref-p = 1.0

; (Re)Generate Velocities
gen-vel = yes
gen-seed = 1
gen-temp = 300

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53

