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Agenda

4\ Machine learning introduction

Supervised machine learning models

— Predicting fuel economy (Regression)

— Human activity learning (Classification)

Feature extraction and feature selection

Unsupervised learning (optional)

Working with big data (optional)

Deploying Machine Learning Algorithms
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Machine Learning is Everywhere
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https://www.mathworks.com/company/newsletters/articles/detecting-oversteering-in-bmw-automobiles-with-machine-learning.html
https://www.mathworks.com/company/user_stories/horizon-wind-energy-develops-revenue-forecasting-and-risk-analysis-tools-for-wind-farms.html
https://www.mathworks.com/company/user_stories/asml-develops-virtual-metrology-technology-for-semiconductor-manufacturing-with-machine-learning.html
https://www.mathworks.com/company/user_stories/buildingiq-develops-proactive-algorithms-for-hvac-energy-optimization-in-large-scale-buildings.html
https://www.mathworks.com/company/user_stories/aberdeen-asset-management-implements-machine-learning-based-portfolio-allocation-models-in-the-cloud.html
https://www.mathworks.com/company/user_stories/cognizant-speeds-customer-churn-analysis-for-telecom-service-provider.html
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What is Machine Learning?
Ability to learn from data without being explicitly programmed
Solution is too complex for hand written rules or equations

E.a =) Hello! t learn complex non-
| linear relationships

Speech Recognition Object Recognition Engine Health Monitoring

Solution needs to adapt with changing data

Al = ,_;({ e AR update as more data
Cesliag— Y = I becomes available
Weather Forecasting Energy Load Forecasting Stock Market Prediction

Solution needs to scale

learn efficiently from

{ — H very large data sets

loT Analytics Taxi Availability Airline Flight Delays
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Types of Machine Learning

Type of Learning Categories of Algorithms
Objective:
Regression :
_ J Easy and accurate computation of day-
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Types of Machine Learning

Type of Learning

Categories of Algorithms

Regression

Supervised
Learning

Machine
Learning

Develop predictive
model based on both
input and output data

Classification

4\ MathWorks

Objective:
Train a classifier to classify human
activity from sensor data

Data:

Inputs 3-axial Accelerometer
3-axial Gyroscope

Outputs k }m L& ,ﬁ\ ~
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Types of Machine Learning

Type of Learning Categories of Algorithms
Objective:
Regression _ _
_ Given data for engine speed and
Supervised hicl d. identi lust
Learning venicie speed, lden |fy clusters
Develop predictive Classification a0 rt:'wanr Sllalectlon 1fn::'r Engine and Vehicle ﬁpeeds |
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Mach '_ne input and output data 70 ¢ ::: -
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Learning n| :
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Agenda

= Machine learning introduction

Supervised machine learning models

‘\ — Predicting fuel economy (Regression)

— Human activity learning (Classification)

Feature extraction and feature selection

Unsupervised learning (optional)

Working with big data (optional)

Deploying Machine Learning Algorithms
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Let’s try it out!

Exercise: Predicting Fuel Economy
In folder 01-RegressionModels




“essentially, all models are wrong,
but some are useful”
— George Box
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Agenda

= Machine learning introduction

Supervised machine learning models

— Predicting fuel economy (Regression)

4\ — Human activity learning (Classification)

= Feature extraction and feature selection
= Unsupervised learning (optional)
= Working with big data (optional)

= Deploying Machine Learning Algorithms
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Machine Learning Workflow

Access and Explore Develop Predictive Integrate Analytics with
Preprocess Data
Data Models Systems

4 N 4 \ , ™ s N
Files Noisy Data Model Creation Desktop Apps
] Lo SEId =
Databases Data Transformation Parameter Enterprise Systems
E sl Optimization MATLAB excel
W) ’[ -: H .exeji{:f;d-ﬁ+
Sensors Feature Extraction Model Validation Embedded Devices
» &> D= ‘;-__;:::::'e“i (=
S EBW ot § >
% 4 % s - ry A" 7
« Data Diversity « Data specific processing + Many different models  Different end users
« Data clean up » Feature Extraction * Model tuning « Different target platforms
« Working with big data + Feature Selection « Computationally intensive <« Different Interfaces
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Human Activity Learning using Smartphones

Example task: Create a model to classify
human activity from sensor data

A g

Machine <§ L&
Learning

@ emm—

1/

Dataset courtesy of:
Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine.
International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012 http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones 16



http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

Samples

Signal Buffering

Buffer 2

H] x

~
ffer 1

/a

B
B

Why? — Calculate features on “chunks” during which
signal doesn’t change (much), increase S/N (in feature)!

Buffer 1

n n Buffer 3

How often do we need to predict?
 Every 2 samples (Our data : 64 samples))

How many data points do we need to predict?
* Need 4 samples (128 samples))
- Create overlapping buffers of 4 points (64 samples))

Compute features (e.g. mean) on each buffer

4\ MathWorks
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Let’s try it out!

Exercise:
humanActivityClassification.mlx
In folder 02-ClassificationModels



http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

Hyperparameter Tuning

A

Important parameter

Standard:
Grid Search

oo

Unimportant parameter

Better:
Random Search
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Why? — Model “knobs” (hyperparameters) need

to be set properly for optimal performance

4\ Classification Learner - Confusion Matrix

CLASSIFICATION LEARNER VIEW

o B B

New Feature

PCA  Misclassificatio

Best: Bayesian Optimization

= Bayesian model indicates impact of change

» Model picks “good” point to try next

= Much more efficient!

= Scale to multi-cores (using PCT) for larger datasets

~

Now available inside

n

Session ¥ Selection Costs
FILE FEATURES OPTIONS

Data Browser

¥ History

o app as “Optimizable”
7 Quicil_lTom_ All All Linear model

1 Tree
Last change: Disabled PCA

2 SVM
Last change: Linear SVM

3 Ensemble
Last change: Bagged Trees

4 KNN
Last change: Fine KNN

5 KNN

@) o \_

DECISION TREES
Ad

the (Classification/
Regression) Learner

GET STARTED

Medium Tree Coarse Tree

P

&5 (
<

ree

All Trees Optimizable
T

Fine Tree

Ac
DISCRIMINANT ANALYSIS
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Hyperparameter Tuning Workflow inside Learner Apps

1. Choose “Optimizable”

model from gallery

4\ Classification Learner - Confusion Matrix

CLASSIFICATION LEARNER

w B M

New Feature PCA GET STARTED

Misclassification

Session ¥ Selection Costs Ic
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A
DISCRIMINANT ANALYSIS
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5. Iterate OR

Prepare for
Integration
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2. Adjust Optimizer Options

(control runtime!)
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4. Export
# Optimized Model
TRAINING | -
2 2 ¥ — :
modl 1| TR s Mo
: Export Model et —

| & Export the currently selected model in the History
| list to the workspace to make predictions with new data

Export Compact Model
& Export the currently selected model in the History list without

its training data to the workspace to make predictions with new data

3. “Train”; Bayesian
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Agenda

= Machine learning introduction

Supervised machine learning models

— Predicting fuel economy (Regression)

— Human activity learning (Classification)
‘\ Feature extraction and feature selection
= Unsupervised learning (optional)
= Working with big data (optional)

= Deploying Machine Learning Algorithms

&\ MathWorks
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Feature Engineering “... Is the art part of data science”

Using domain knowledge to

create features for machine learning algorithms
Sergey Yurgenson

(Kaggle Master) §

Feature transformation: high dimensionality

Power Spectral Density Comparison

40

Feature selection: subset of relevant features

Walking
WalkingUpstairs | |

20 [

0F

Possible feature engineering ideas:
— Additional statistics — PCA, NCA etc.

— Signal Processing Techniques — power spectral density,
wavelets etc.

— Image Processing Techniques — bag of words, pixel intensity *
etc. -100

— Get creative!
How to use Diagnostic Feature Designer [12 min video]

-20

40 |

Power/frequency (dB/Hz)

-60

0 1 2 3 s 5 6 7 8 9 10
Frequency (Hz)
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https://www.mathworks.com/videos/predictive-maintenance-part-4-how-to-use-diagnostic-feature-designer-for-feature-extraction-1554458327719.html

Let’s try it out!

Exercise: featureEngineering.mix
In folder 03-FeatureEngineering
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Feature Generation with Wavelet Scattering

Why? — Obtain good features “automagically”,
What are Wavelets? without domain knowledge

— Instead of decomposing signal into complete sinus waves, decompose into “wavelets”
— Tech Talks explaining Wavel ets [4 videos]

— This conceptually looks like this:

(Raw) Signal
Better than Spectrograms
because can vary in scale! Slide Wavelet

across Signal

Wavelet Scattering Framework [Bruna and Mallat 2013]
— Automatic Feature Extraction

— Reduces data dimensionality and provides compact features
— Works with both Signa| and |mage data [Texture example, Diqit Classification]

24


https://www.mathworks.com/videos/series/understanding-wavelets-121287.html
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34
https://www.mathworks.com/help/wavelet/examples/texture-classification-with-wavelet-image-scattering.html
https://www.mathworks.com/help/wavelet/examples/digit-classification-with-wavelet-scattering.html

Wavelet Scattering Nuts and Bolts

Scattering o @ Features E§j Classifier
Min. Signal Framework

Length

Pseudo-Code: sf = waveletScattering(Signallength) ;
Loop over signal
waveletFeature = featureMatrix(sf,signal)
Append waveletFeature to feature table
Add labels
end

Additional Resources:
Wavelet scattering Tech talk [4 min video]
Wavelet scattering for ECG [doc example]
Blog about Wavelet scattering on towardsdatascience.com

4\ MathWorks
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https://www.mathworks.com/videos/understanding-wavelets-part-5-machine-learning-and-deep-learning-with-wavelet-scattering-1577170399650.html
https://www.mathworks.com/help/wavelet/examples/ecg-signal-classification-using-wavelet-time-scattering.html
https://towardsdatascience.com/a-convnet-that-works-on-like-20-samples-scatter-wavelets-b2e858f8a385

Diagnostic Feature Designer App
Predictive Maintenance Toolbox R2018b and R2019a

Extract, visualize, and rank
features from sensor data

Use both statistical and dynamic
modeling methods

Work with out-of-memory data

Explore and discover techniques
without writing MATLAB code

&\ MathWorks

Why? — Empower signal domain
expert to try all his favorite features.

4\ Diagnostic Feature Designer - Power Spectrum: pressure_ps/Data

pressure_ps/Data

¥ Feature Tables.

Features:
flow_stats/Data_ClearanceFactor
flow_stats/Data_CrestFactor
flow_stats/Data_lmpulseFactor
flow_stats/Data_Kurtosis
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FEATURE DESIGNER OWER SPEC vEW P RLFUG % RLUExampies % Cleanlp . 1 o o
Fitering & Averaging v
O H & W 3 o B 5 &
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w Signals & Spectra
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Agenda

Machine learning introduction

Supervised machine learning models

— Predicting fuel economy (Regression)

— Human activity learning (Classification)

Feature extraction and feature selection

Unsupervised learning (optional)
‘\ Working with big data (optional)

= Deploying Machine Learning Algorithms
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Big Data in MATLAB: Tall Arrays

Extends the “array” data type to out-of-memory i
— Use like a regular (in-memory) array in supported functions
— (With some setup) Scales processing to clusters with Spark

Applicable when:
— Data is columnar — with many rows
— Overall data size is too big to fit into memory
— Operations are mathematical/statistical in nature

Hundreds of functions supported in MATLAB and

Statistics and Machine Learning Toolbox Tall Data

31
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Big Data Without Big Changes

One file One hundred files
Access Data Access Data
measured = readtable('PumpData.csv'); measured = datastore('PumpData*.csv');
measured = table2timetable(measured); measured = tall(measured);
measured = table2timetable(measured);

Preprocess Data Preprocess Data

Select data of interest Select data of interest

measured = measured(timerange(seconds(1),seconds(2)),:) >
measured = measured(timerange(seconds(1l),seconds(2)),:)

Work with missing data Work with missing data
measured = dililmissing(measured, "1inear); measured = fillmissing(measured, 'linear’);
Calculate statistics Calculate statistics

m
S

mean(measured.Speed) ;
std(measured.Speed) ;

mean(measured.Speed) ;
std(measured.Speed) ;

w
i n

[m,s] = gather(m,s);

32



Let’s try it out!

Exercise: predictDriverTip.mlx
In folder 05-BigData
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What’s our AutoML? Automate main steps to minimize expertise

needed and increase productivity
Data Diversity
Data Big data

Explore and 1
Pre-Process Havelets

NCA Weights

16 2 {..::::z‘
Feature . : | |
Extraction ]
Dep|0y Platforms
5 Interfaces o ol q 41 I Wl
codegen Size/Speed Zlfitcautﬂ e

o 38
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Summary:. Complete Machine Learning Workflow

1. Easyto Learn and Use
2. Engineer Features & Optimize Model
3. Deploy Anywhere: Embedded Device and Enterprise IT/OT

Learner Apps Automation C Code Generation
'_I'r_aln_ Optimize Deploy not justL
Classification & - hyperparameters... prediction, but |
Regress_lon : Generate and also
models without Select features preprocessing
coding

i "} Machine | e
N EEEER RN Memory i Predictive - gl v,

- ] . 1 I 1 |
“t-- -l Maintenance, " Nt

{] : i |
el ... using the Tex(;,IS|gnaI :
1 samecodeas Pan mage _
in-memory rocessing,
Tall Data 20




Where to go from here?

= Finish what you didn’t get to - Continue exploring:
— Keep using MATLAB Online: https://matlab.mathworks.com (but no GPU!)
— Your existing desktop MATLAB license (but need to copy content)

« Where to find content? MATLAB Drive drive.matlab.com (250MB)
= Apply this to YOUR work
- Take a paid training on Machine Learning or Big Data

4\ MathWorks
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https://matlab.mathworks.com/

Resources

Machine Learning Onramp (2 hr online introduction)

Machine Learning with MATLAB:
— Overview, Cheat sheet
— Machine Learning Intro (Tech talk videos)
— Machine Learning with MATLAB Introduction (eBook)
— Mastering Machine Learning (eBook)
— Applied Machine Learning (Tech Talk videos)
— Practical Data Science with MATLAB (Coursera Specialization)

Machine and Deep Learning
— Deep vs. Machine Learning: Choosing the Best Approach (eBook)
— Deep learning Onramp (2hr online introduction)

&\ MathWorks'
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https://www.mathworks.com/learn/tutorials/machine-learning-onramp.html
https://www.mathworks.com/content/dam/mathworks/fact-sheet/machine-learning-quick-start-guide.pdf
https://www.mathworks.com/videos/series/introduction-to-machine-learning.html
https://www.mathworks.com/campaigns/offers/machine-learning-with-matlab.html
https://www.mathworks.com/campaigns/offers/mastering-machine-learning-with-matlab.html
https://www.mathworks.com/videos/series/applied-machine-learning.html
https://www.coursera.org/specializations/practical-data-science-matlab
https://www.mathworks.com/campaigns/offers/deep-learning-vs-machine-learning-algorithm.html
https://matlabacademy.mathworks.com/R2017b/portal.html?course=deeplearning
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J\MathWorky can help you do Machine Learning

Free resources: More options:
— Guided evaluations — Paid Training (2-day Machine Learning,
— Proof-of-concept projects 1-day Big Data, see Appendix)
— Seminars — Advanced customer support
— Other Hands-on workshops — Enterprise and cloud deployment

— Consulting services
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Accelerating the pace of engineering and science
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