
1© 2020 The MathWorks, Inc.

Parallel Computing Hands-On Workshop

Raymond Norris

Application Engineer, MathWorks



2

Why parallel computing?

 Save time and tackle increasingly complex problems
– Reduce computation time by using available compute cores and GPUs

 Why parallel computing with MATLAB and Simulink?
– Accelerate workflows with minimal to no code changes to your original code

– Scale computations to clusters and clouds

– Focus on your engineering and research, not the computation



3

Automotive Test Analysis 
Validation time sped up 2X

Development time reduced 4 months

Calculating Derived Market Data
Updates sped up 8X

Updates reduced from weeks to days

Discrete-Event Model of Fleet Performance
Simulation time sped up 20X

Simulation time reduced from months to hours

Heart Transplant Study
Process time sped up 6X

4-week process reduced to 5 days

Benefits of Parallel Computing

User stories



4

Optimizing before parallelizing

Techniques for accelerating MATLAB algorithms and applications

1. Find bottlenecks

2. Implement effective programming techniques

3. (Advanced) Replace code with MEX functions



5

Multicore computing options for MATLAB

Multi-core CPU

MATLAB

MATLAB multicore



6

Multi-core CPU

Parallel Computing Toolbox

Multicore computing options for MATLAB

MATLAB

MATLAB multicore



7

Compute 40,000 iterations
van der Pol Equation study with parfor



8

 Utilizing multiple cores on a desktop computer

 Accelerating applications with NVIDIA GPUs

 Scaling up to cluster and cloud resources

 Tackling data-intensive problems on desktops and clusters

 Summary and resources

Agenda



9

Utilizing multiple CPU cores

Core 3

Core 1 Core 2

Core 4

MATLAB

Parallel Computing Toolbox
Workers

a = zeros(5, 1);
b = pi;

for i = 1:5

a(i) = i + b;

end

disp(a)

a = zeros(5, 1);
b = pi;

parfor i = 1:5

a(i) = i + b;

end

disp(a)



10

Scaling MATLAB applications and Simulink simulations

Automatic parallel support in toolboxes

Common programming constructs

Advanced programming constructs

E
a

se
 o

f 
U

s
e

G
rea

te
r C

o
n

tro
l



11

Statistics and Machine Learning
Resampling Methods, k-Means 

clustering, GPU-enabled functions

Image Processing 
Batch Image Processor, Block 

Processing, GPU-enabled functions

Computer Vision
Bag-of-words workflow, 

object detectors

Other automatic parallel supported toolboxes

Deep Learning
Deep Learning, Neural Network 

training and simulation

Signal Processing and Communications 
GPU-enabled FFT filtering, cross 

correlation, BER simulations
Estimation of gradients, parallel search

Optimization and Global Optimization

Automatic parallel support (MATLAB)

Enable parallel computing support by setting a flag or preference



12

Automatic parallel support (Simulink)

Enable parallel computing support by setting a flag or preference

Simulink Control Design

Frequency response estimation

Simulink/Embedded Coder

Generating and building code

Simulink Design Optimization

Response optimization, sensitivity 
analysis, parameter estimation

Communication Systems Toolbox

GPU-based System objects for 
Simulation Acceleration

Other automatic parallel supported toolboxes



13

Scaling MATLAB applications and Simulink simulations

Automatic parallel support in toolboxes

Common programming constructs
(parfor, parfeval, …)

Advanced programming constructs

E
a

se
 o

f 
U

s
e

G
rea

te
r C

o
n

tro
l



14

Parallelism using parfor

 Run iterations in parallel
 Examples: parameter sweeps, Monte Carlo simulations

MATLAB

Time Time

Workers

Learn more about parfor



15

 Examples: parameter sweeps, Monte Carlo simulations
 No dependencies or communications between tasks

MATLAB

Time Time
Time

a = zeros(5, 1);
b = pi;

for i = 1:5

a(i) = i + b;

end

disp(a)

a = zeros(5, 1);
b = pi;

parfor i = 1:5

a(i) = i + b;

end

disp(a)

Workers

Parallelism using parfor



16

Parallelism using parfor



17

a = zeros(10, 1);
b = pi;

parfor i = 1:10

a(i) = i + b;

end

disp(a)

Parallelism using parfor

MATLAB

Workers



18

Optimizing parfor

Type Category

sliced input input

broadcast input

reduction output

sliced output output

loop only exist on worker

temporary only exist on worker

Troubleshooting variables in parfor-loops

Use more

Keep small



19

Parallelism using parfeval

 Asynchronous execution on parallel workers
 Useful for “needle in a haystack” problems 

MATLAB

Workers

for idx = 1:10

f(idx) = parfeval(@magic,1,idx);

end

for idx = 1:10

[completedIdx,value] = fetchNext(f);

magicResults{completedIdx} = value;

end

fetchNext

Outputs



20

DataQueue

Send data or messages from parallel 
workers back to the MATLAB client

Retrieve intermediate values and 
track computation progress

function a = parforWaitbar

D = parallel.pool.DataQueue;

h = waitbar(0, 'Please wait ...');

afterEach(D, @nUpdateWaitbar)

N = 200;

p = 1;

parfor i = 1:N

a(i) = max(abs(eig(rand(400))));

send(D, i)

end

function nUpdateWaitbar(~)

waitbar(p/N, h)

p = p + 1;

end

end



21

Run multiple simulations in parallel with parsim

 Run independent Simulink 
simulations in parallel using 
the parsim function 

Workers

Time Time



22

Scaling MATLAB applications and Simulink simulations

Automatic parallel support in toolboxes

Common programming constructs

Advanced programming constructs
(spmd, labBarrier, …)

E
a

se
 o

f 
U

s
e

G
rea

te
r C

o
n

tro
l



23

 Utilizing multiple cores on a desktop computer

 Accelerating applications with NVIDIA GPUs

 Scaling up to cluster and cloud resources

 Tackling data-intensive problems on desktops and clusters

 Summary and resources

Agenda



24

Utilizing one or multiple GPUs

MATLAB

Parallel Computing Toolbox



25

Accelerating MATLAB applications with GPUs

10x speedup 
deep learning training

77x speedup 
wave equation solving

12x speedup 
using Black-Scholes model

14x speedup 
template matching routine

10x speedup
K-means clustering algorithm

44x speedup 
simulating the movement of celestial objects 

NVIDIA Titan V GPU, Intel® Core™ i7-8700T Processor (12MB Cache, 2.40GHz)

More info on running MATLAB functions on a GPU



26

Speed-up using NVIDIA GPUs

 Ideal Problems
– massively parallel and/or 

vectorized operations

– computationally intensive

 Hundreds of GPU-
supported functions

 Use gpuArray and 
gather to transfer data 
between CPU and GPU

MATLAB GPU computing



27

 Utilizing multiple cores on a desktop computer

 Accelerating applications with NVIDIA GPUs

 Scaling up to cluster and cloud resources

 Tackling data-intensive problems on desktops and clusters

 Summary and resources

Agenda



28

Cluster

Parallel computing paradigm
Clusters and clouds

MATLAB Parallel Server

MATLAB

Parallel Computing Toolbox



29

Scale to cluster and cloud

 Use MATLAB Parallel Server

 Change hardware without changing algorithm

 Cross-platform submission



30

batch simplifies offloading computations
Submit jobs to the cluster

job = batch('myscript','Pool',3);

pool

parfor

worker

MATLAB

Parallel Computing Toolbox



31

batch simplifies offloading computations
Submit jobs to the cluster

job = batchsim(in,'Pool',3);

pool

parsim

worker

MATLAB

Parallel Computing Toolbox



32

 Utilizing multiple cores on a desktop computer

 Accelerating applications with NVIDIA GPUs

 Scaling up to cluster and cloud resources

 Tackling data-intensive problems on desktops and clusters

 Summary and resources

Agenda



33

Big data workflows
ACCESS DATA

More data and collections
of files than fit in memory

DEVELOP & PROTOTYPE ON THE DESKTOP

Adapt traditional processing tools or 
learn new tools to work with Big Data

SCALE PROBLEM SIZE

To traditional clusters and Big 
Data systems like Hadoop 



34

tall arrays

 New data type designed for data that doesn’t fit into memory

 Lots of observations (hence “tall”)

 Looks like a normal MATLAB array
– Supports numeric types, tables, datetimes, strings, etc.

– Supports several hundred functions for basic math, stats, indexing, etc.

– Statistics and Machine Learning Toolbox support 

(clustering, classification, etc.)

Working with tall arrays



35

tall array
Single

Machine
Memory

tall arrays

 Automatically breaks data up into 
small “chunks” that fit in memory

 Tall arrays scan through the 
dataset one “chunk” at a time

 Processing code for tall arrays is 
the same as ordinary arrays

Single
Machine
MemoryProcess



36

tall array

Cluster of
Machines

Memory

Single
Machine
Memory

tall arrays

 With Parallel Computing Toolbox, 
process several “chunks” at once

 Can scale up to clusters with 
MATLAB Parallel Server 

Single
Machine
MemoryProcess

Single
Machine
MemoryProcess

Single
Machine
MemoryProcess

Single
Machine
MemoryProcess

Single
Machine
MemoryProcess

Single
Machine
MemoryProcess



37

distributed arrays

 Distribute large matrices across workers running on a cluster

 Support includes matrix manipulation, linear algebra, and signal processing

 Several hundred MATLAB functions overloaded for distributed arrays

1111 2626 4141

1212 2727 4242

1313 2828 4343

1515 3030 4545

1616 3131 4646

1717 3232 4747

2020 3535 5050

2121 3636 5151

2222 3737 5252

MATLAB Parallel Server

MATLAB

Parallel Computing Toolbox



38

distributed arrays

MATLAB Parallel Server

% prototype with a large data set

parpool('cluster');

% Read the data – read the whole dataset
ds = datastore('colchunk_A_*.csv');

% Send data to workers
dds = distributed(ds);

% Run calculations
A = sparse(dds.i, dds.j, dds.v);
x = A \ distributed.ones(n^2, 1);

% Transfer results to local workspace
xg = gather(x);

Working with distributed arrays

% prototype with a small data set

parpool('local');

% Read the data – read in part of the data
ds = datastore('colchunk_A_1.csv');

% Send data to workers
dds = distributed(ds);

% Run calculations
A = sparse(dds.i, dds.j, dds.v);
x = A \ distributed.ones(n^2, 1);

% Transfer results to local workspace
xg = gather(x);

MATLAB

Parallel Computing Toolbox

Develop and prototype locally and then scale to the cluster



39

 Utilizing multiple cores on a desktop computer

 Accelerating applications with NVIDIA GPUs

 Scaling up to cluster and cloud resources

 Tackling data-intensive problems on desktops and clusters

 Summary and resources

Agenda



40

Summary

 Leverage parallel computing without needing to be parallel expert

 Speed up the execution of MATLAB applications using additional hardware

 Develop parallel applications on the desktop, easily scale to clusters as needed



41

Some other valuable resources

 Getting started with parallel computing
– Parallel Computing Toolbox

– Performance and Memory

– MATLAB with GPUs

 Scaling to the cluster and cloud
– MATLAB Parallel Server

– MATLAB Parallel Server on the cloud

– Big data with MATLAB



42© 2020 The MathWorks, Inc.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other 
product or brand names may be trademarks or registered trademarks of their respective holders. © 2020 The MathWorks, Inc.


