
WestGrid & ARC Summer School

Short read mapping and visualization: Core aspects
of next-generation sequencing data analysis

June 17th 2020 (9:00AM-12:00PM PST)
Phillip A Richmond & Oriol Fornes (TA)

Copyright Information

The material is open source, and in this
presentation no previous external work was utilized.

Welcome!

● Welcome to the Introduction to Short Read Mapping
● In this tutorial you will learn how to map Illumina short reads against a

reference genome using the Compute Canada High Performance Computing
(HPC) cluster “Cedar”

● Soft-start at 9:15, while we figure out login information and access to the
Cedar cluster.

● This presentation: https://bit.ly/WGSSBioinformaticsJune17

https://bit.ly/WGSSBioinformaticsJune17

Interactive Experience

We hope this is an interactive experience for all of you.

Questions/Problems can be posted to the etherpad:

https://etherpad.opendev.org/p/_B8ETduCObCQ6BN-811p:

We have a fantastic TA (Dr. Oriol Fornes) to assist in answering questions and
solving problems while I’m presenting, at the end of the session I can address
unresolved questions

https://etherpad.opendev.org/p/_B8ETduCObCQ6BN-811p

Speaker Bio

Phillip Richmond
PhD Candidate, Wasserman Lab, BC Children’s Hospital Research
Institute

Bioinformatics Program, University of British Columbia

https://phillip-a-richmond.github.io

Research:Maximizing the Utility of Whole Genome Sequencing in the
Diagnosis of Rare Genetic Disorders

Previous work in Genomics: Genomic Contributions to Ethanol
Sensitivity in Mice, Polyploid Evolution in Yeast, Brewing Yeast
Genomics, Cancer Cell Epigenetics, Addiction Predisposition

Also loves teaching genomics, and my puppy Sherlock Holmes

@sherlock_holmes_doodle

https://phillip-a-richmond.github.io

Session Outline

● Lecture 1
○ Introduction to next generation sequencing data & diverse data types
○ Transcriptional cis-regulatory datasets and where to find them
○ Accessing videos and support

● Video 1 - Initialize Workshop Directory and Explore Data
● Video 2 - Map and convert data using BWA mem and Samtools
● Mini check-in
● Video 3 - Visualize data using IGV
● Problem sets
● Closing remarks

Session Outline (Rough Timeline)

● Lecture 1 (9:15-9:30)
○ Introduction to next generation sequencing data & diverse data types
○ Transcriptional cis-regulatory datasets and where to find them
○ Accessing videos and support

● Video 1 - Initialize Workshop Directory and Explore Data (9:30-10:15)
● Video 2 - Map and convert data using BWA mem and Samtools (10:15-11:00)
● Mini check-in (11:00-11:15)
● Video 3 - Visualize data using IGV (11:15-12:00)
● Problem sets
● Closing remarks

Session Outline

● Lecture 1
○ Introduction to next generation sequencing data & diverse data types
○ Transcriptional cis-regulatory datasets and where to find them
○ Accessing videos and support

● Video 1 - Initialize Workshop Directory and Explore Data
● Video 2 - Map and convert data using BWA mem and Samtools; call peaks with MACS2
● Mini Check-in
● Video 3 - Visualize data using IGV
● Problem sets
● Closing remarks

Next generation sequencing: Short-read sequencing

Fragments of DNA

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify

C

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify 3-Sequencing by Synthesis
G TT A

C

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify 3-Sequencing by Synthesis
G TT A

C

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify 3-Sequencing by Synthesis
G TT A

...

C

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify 3-Sequencing by Synthesis
G TT A

...

@Read1
TCTTGCGTACGTCTTCGATCGTA
+
!!@$@##@!%!@#$!!LLBBDKSNK

Convert to
Fastq

Diverse Input Data, Same Output Format
● Different input data types still result in the same output data format
● Examples:

○ DNA-seq, ChIP-seq, RNA-seq, GRO-seq

● For non-DNA assays (e.g. RNA-seq/GRO-seq), they undergo a conversion from
RNA-->cDNA before sequencing

@K00171:617:HMMTNBBXX:1:1101:28686:1648 1:N:0:GACTAGTA
TCTTGCGTACGTCTTCGATCGTA
+
!!@$@##@!%!@#$!!LLBBDKSNK

@Readname:And:Flowcell:Info 1 or 2 for read pair:N:0:Barcode
Sequence
“Plus Sign”
ASCII-Quality Scores

EXAMPLE MEANING

Illumina machines use quality binning
Q

ua
lit

y
sc

or
e

(Q
)

Probability of error (p)

Q = -10 * log10(p)

https://www.illumina.com/documents/products/technotes/techn
ote_understanding_quality_scores.pdf https://en.wikipedia.org/wiki/FASTQ_format

https://www.illumina.com/documents/products/technotes/technote_understanding_quality_scores.pdf
https://www.illumina.com/documents/products/technotes/technote_understanding_quality_scores.pdf
https://en.wikipedia.org/wiki/FASTQ_format

Session Outline

● Lecture 1
○ Introduction to next generation sequencing data & diverse data types
○ Transcriptional cis-regulatory datasets and where to find them
○ Accessing videos and support

● Video 1 - Initialize Workshop Directory and Explore Data
● Video 2 - Map and convert data using BWA mem and Samtools; call peaks with MACS2
● Lecture 2

○ Visualizing data and downstream analysis pipelines
● Video 3 - Visualize data using IGV
● Problem sets
● Closing remarks

ENCODE - Encyclopedia of DNA Elements

ENCODE is one of the
many places to find
open source data:
www.encodeproject.org

encodeproject.org

http://www.encodeproject.org

You can download a diverse set of data across tissues/cell types

Transcription factor binding unified across sources

Remap - A resource for
curated TF ChIP-seq
data

encodeproject.org

Remap: http://pedagogix-tagc.univ-mrs.fr/remap/

http://pedagogix-tagc.univ-mrs.fr/remap/

http://pedagogix-tagc.univ-mrs.fr/remap/

Chromatin Immunoprecipitation (ChIP-seq)
Chromatin Immunoprecipitation Sequencing (ChIP-seq) protocol:
Purpose: To find which sequences of DNA a specific protein interacts with, i.e Transcription Factor (TF).

T
F

1-Crosslink
DNA:Protein

Chromatin Immunoprecipitation (ChIP-seq)
Chromatin Immunoprecipitation Sequencing (ChIP-seq) protocol:
Purpose: To find which sequences of DNA a specific protein interacts with, i.e Transcription Factor (TF).

T
F

T
F

1-Crosslink
DNA:Protein

2-Shear

Chromatin Immunoprecipitation (ChIP-seq)
Chromatin Immunoprecipitation Sequencing (ChIP-seq) protocol:
Purpose: To find which sequences of DNA a specific protein interacts with, i.e Transcription Factor (TF).

T
F

T
F

T
F

1-Crosslink
DNA:Protein

2-Shear

3-Pull Down
protein using
anti-protein
antibody on a
column, wash
away other DNA

Chromatin Immunoprecipitation (ChIP-seq)
Chromatin Immunoprecipitation Sequencing (ChIP-seq) protocol:
Purpose: To find which sequences of DNA a specific protein interacts with, i.e Transcription Factor (TF).

T
F

T
F

T
F

1-Crosslink
DNA:Protein

2-Shear

3-Pull Down
protein using
anti-protein
antibody on a
column, wash
away other DNA

4-Reverse
Crosslink T

F

Chromatin Immunoprecipitation (ChIP-seq)
Chromatin Immunoprecipitation Sequencing (ChIP-seq) protocol:
Purpose: To find which sequences of DNA a specific protein interacts with, i.e Transcription Factor (TF).

T
F

T
F

T
F

1-Crosslink
DNA:Protein

2-Shear

3-Pull Down
protein using
anti-protein
antibody on a
column, wash
away other DNA

4-Reverse
Crosslink T

F

5-Ligate
sequencing
adapters

Chromatin Immunoprecipitation (ChIP-seq)
Chromatin Immunoprecipitation Sequencing (ChIP-seq) protocol:
Purpose: To find which sequences of DNA a specific protein interacts with, i.e Transcription Factor (TF).

T
F

T
F

T
F

1-Crosslink
DNA:Protein

2-Shear

3-Pull Down
protein using
anti-protein
antibody on a
column, wash
away other DNA

4-Reverse
Crosslink T

F

5-Ligate
sequencing
adapters

6-Sequence
Library

TGCGTA
CGTACTG

GCATGCGTA

ATAC-seq represents open chromatin

Mapping data to a reference: ChIP-seq Peak Calling
● Individually, the short sequencing

reads do not have much
information

● Collectively, they can represent
something useful

● Analyzing short-read data takes
two common forms:

○ Reference-based mapping
○ Assembly

Raw data (not that
useful)

Example: ChIP-seq for a Transcription Factor

Mapping data to a reference: ChIP-seq Peak Calling
● Individually, the short sequencing

reads do not have much
information

● Collectively, they can represent
something useful

● Analyzing short-read data takes
two common forms:

○ Reference-based mapping
○ Assembly

Raw data (not that
useful)

Example: ChIP-seq for a Transcription Factor

Aligned against
Reference genome

Map/align reads
against the genome

Mapping data to a reference: ChIP-seq Peak Calling
● Individually, the short sequencing

reads do not have much
information

● Collectively, they can represent
something useful

● Analyzing short-read data takes
two common forms:

○ Reference-based mapping
○ Assembly

Raw data (not that
useful)

Example: ChIP-seq for a Transcription Factor

Aligned against
Reference genome

Map/align reads
against the genome

Find pileups/peaks of reads

Regions Bound By TF

T
F

Session Outline

● Lecture 1
○ Introduction to next generation sequencing data & diverse data types
○ Transcriptional cis-regulatory datasets and where to find them
○ Accessing videos and support

● Video 1 - Initialize Workshop Directory and Explore Data
● Video 2 - Map and convert data using BWA mem and Samtools; call peaks with MACS2
● Mini Check-in
● Video 3 - Visualize data using IGV
● Problem sets
● Closing remarks

Accessing videos and support

Videos

- Video 1: https://youtu.be/CGvMm7JXQGs
- Video 2: https://youtu.be/x_uRLx1o9AM
- Video 3: https://youtu.be/UzCIGF4_OTg

Support:

Etherpad - https://etherpad.opendev.org/p/_B8ETduCObCQ6BN-811p

https://youtu.be/CGvMm7JXQGs
https://youtu.be/x_uRLx1o9AM
https://youtu.be/UzCIGF4_OTg
https://etherpad.opendev.org/p/_B8ETduCObCQ6BN-811p

Session Outline

● Lecture 1
○ Introduction to next generation sequencing data & diverse data types
○ Transcriptional cis-regulatory datasets and where to find them
○ Accessing videos and support

● Video 1 - Initialize Workshop Directory and Explore Data
● Video 2 - Map and convert data using BWA mem and Samtools; call peaks with MACS2
● Mini Check-in
● Video 3 - Visualize data using IGV
● Problem sets
● Closing remarks

Video 1 content

1. Set up your workshop directory
a. Create new directory inside: /scratch/richmonp/TRAINING/JUNE2020/
b. Look at the tools directory: /scratch/richmonp/TRAINING/JUNE2020/TOOLS/

2. Explore files
a. Reference genome files: fasta
b. Raw data files: fastq
c. Processed data files

Let’s get started! Login to Cedar
You should have already attempted this by now, but as a reminder:

1. Open up a terminal (PC: MobaXterm, Putty | Mac/Linux: Terminal)
2. Login to Cedar

Command (login):
$ ssh <username>@cedar.computecanada.ca
$ ssh richmonp@cedar.computecanada.ca

NOTE: Whenever you see me represent something with the <>, I want you to
replace it with what applies to you. Also, whenever there is a “$”, I am showing
you a command. Commands will be highlighted, with the format in yellow, and the
actual example in green

mailto:richmonp@orcinus.westgrid.ca

We have a reservation for this course

--account=def-training-wa_cpu --reservation=wgss1-wr_cpu

This will get you access to the reservation, meaning your jobs won’t wait in the queue. The reservation is
active until 5PM today, June 17th.

Put it at the top of your job scripts, or when using salloc

Orienting yourself to this workshop directory

The workshop directory is located here:
/scratch/richmonp/TRAINING/JUNE2020/

Change into that directory:
$ cd /scratch/richmonp/TRAINING/JUNE2020/

Important subdirectories:
/scratch/richmonp/TRAINING/JUNE2020/Files/SCRIPTS/ -

Has scripts & templates that you can copy/use
/scratch/richmonp/TRAINING/JUNE2020/Files/RAW_DATA/ -

Has the some raw data that we can use today for analysis
/scratch/richmonp/TRAINING/JUNE2020/Files/PROCESS/ -

If nothing works for you today, these are some processed files that you can look at/visualize
/scratch/richmonp/TRAINING/JUNE2020/ -

This is where your own workshop directory will exist, and you have permission over it

Set up a workshop directory

$ mkdir <directory>
$ mkdir /scratch/richmonp/TRAINING/JUNE2020/SHERLOCK/

NOTE: If you need help, you will need to share permissions on your directory:

$ chmod ugo=rwx -R <directory>
$ chmod ugo=rwx -R /scratch/richmonp/TRAINING/JUNE2020/SHERLOCK/

For additional information about permissions and other common command-line
functions see me during the problemset.

All you need is scripts

/scratch/richmonp/TRAINING/JUNE2020/Files/SCRIPTS/ has 3 scripts inside it:

H3K27Ac_Workshop.sh

POLR2A_Workshop.sh

ATAC-Seq_Workshop.sh

I’m going to copy these so I can play with them:

$ cp /scratch/richmonp/TRAINING/JUNE2020/Files/SCRIPTS/*sh SHERLOCK/

Breakdown of the script: Welcome to the mellow yellow

This header information contains info about the account to bill for these hours, I want it to mail me, how
much RAM and CPUs I need over a single node, and where to send standard error and output

Breakdown of the script: Welcome to the mellow yellow

This header information contains info about the account to bill for these hours, I want it to mail me, how
much RAM and CPUs I need over a single node, and where to send standard error and output

You will need to change this to
be relevant to your own use
case

Load my necessary tools

I’m also going to load the necessary modules (always try to keep version information with modules).

I have also installed a tool via conda, which is not available on the Cedar software stack. You can activate
the environment which houses the tool using these two commands.

Details on how that install was possible can be found in the TOOLS/ subdirectory.

You’re going to need a reference genome next

Next, I specify the genome I want to use to map my data against. I realize you won’t all work in human,
but if you work in a model organism I recommend checking out this repository for genomes:

/cvmfs/ref.mugqic/genomes/

Here, I’m using their BWA index, and their Fasta file

Reference Genome, Fasta file format
Reference genomes are packaged into fasta files.

Format:
>chromosome1_Name OtherChromInfo AccessionInfo Etc.
NNNNNNATTCGTTGATGGATAGCATGATCAGTAGACATGACATGACAGATGAGGGATATGATGACCACCACC
CAGATTCCCGGCCGGCCGGCCGGCCCGGGCCGGCCGGCCGGGCCCGGCTATATATATATACATAG ….
>chromosome2_Name OtherChromInfo AccessionInfo Etc.
NNNNNNNCCCCGGCCGGCCGGCCGGCCCGGGCCGGCCGGCCGGGCCCGGCTATATATATATACATAGATG
ATCAGTAGACATGACATGACAGATGAGGGATATGATGACCACCACCCAGATTGGAGTTGCCAGAT

We need to “index” this genome in order to map to it. There are many different genome indexing strategies. For
bwa, we use the command bwa index, which creates an FM-Index of the genome.
$ bwa index <in.fasta>
This will generate these files:
genome.fa.amb, genome.fa.ann, genome.fa.bwt, genome.fa.pac, genome.fa.sa

Since it’s done for us, we don’t have to redo this step.

Set some more variables

I’m setting a sample identifier, my own name, a working directory, and the threads I’m using (just setting
equal to what we set above). I then create the working directory and change into it.

I HIGHLY RECOMMEND using variables like this within your scripts. It will make it possible to easily
change out a single variable or path, and the script can remain functional

You will need to change this
directory to be relevant to your
own use case. E.g. change to
“SHERLOCK”, keeping the “”

Set some more variables

I’m setting a sample identifier, my own name, a working directory, and the threads I’m using (just setting
equal to what we set above). I then create the working directory and change into it.

I HIGHLY RECOMMEND using variables like this within your scripts. It will make it possible to easily
change out a single variable or path, and the script can remain functional

These files will be the raw data
files (renamed), the output
SAM, and BAM files, (ignore
the MACS2 +
PEAKS/CONTROL stuff), and
a BigWig file.

Set even more variables, and download some data

Here I download the data from ENCODE, using links I retrieved from navigating the website.

Then I rename files so they fit my convention (instead of ENCFF999VOH, etc.).

If you want to explore lots of these datasets to download, use the https://www.encodeproject.org website
(Hint: this is a part of Problem set 1).

https://www.encodeproject.org

Session Outline

● Lecture 1
○ Introduction to next generation sequencing data & diverse data types
○ Transcriptional cis-regulatory datasets and where to find them
○ Accessing videos and support

● Video 1 - Initialize Workshop Directory and Explore Data
● Video 2 - Map and convert data using BWA mem and Samtools; generate bigWigs with deeptools
● Mini Check-in
● Video 3 - Visualize data using IGV
● Problem sets
● Closing remarks

Video 2 content

1. Overview of basic read-mapping pipeline
2. Software usage

a. BWA mem
b. Samtools
c. DeepTools

3. Edit scripts and submit to scheduler
4. Examine output files (from pre-analyzed data)

Pipeline Overview

Sample.R1.fastq

Sample.R2.fastq

genome.fa*

(genome.fa.ann
genome.fa.amb
genome.fa.pac
genome.fa.bwt
genome.fa.sa)

BWA
mem

Raw reads

Genome index

Sample.sam

samtools
view

samtools
sort

samtools
index

Sample.bam

Sample.sorted.bam

Sample.sorted.bam.bai

File format conversion

Read mapping

IGV
Visualization

Pipeline Overview

Sample.R1.fastq

Sample.R2.fastq

genome.fa*

(genome.fa.ann
genome.fa.amb
genome.fa.pac
genome.fa.bwt
genome.fa.sa)

BWA
mem

Raw reads

Genome index

Sample.sam

samtools
view

samtools
sort

samtools
index

Sample.bam

Sample.sorted.bam

Sample.sorted.bam.bai

File format conversion

Read mapping

IGV
Visualization

Learning the bwa mem command
First we need to load the module that has the bwa command in it
$ module load bwa/0.7.15

Next we will call the bwa mem command to see how it’s used
$ bwa mem

Let’s break down this usage statement:
$ bwa mem [options] <idxbase> <in1.fq> [in2.fq]

[] is an optional argument, <> is required and is asking you to replace what’s inside with the appropriate
value
Example (From your workshop directory):
$ bwa mem
/cvmfs/ref.mugqic/genomes/species/Homo_sapiens.GRCh38/genome/bwa_index/Homo_sapiens.GRCh38.fa
Sample1_R1.fastq Sample1_R2.fastq > Sample1.sam

Mapping Reads to the Genome within our script

The little if/fi statements are to check if the output file exists, and if it does not exist, then perform the little
command inside the block.

The BWA mem command is in the block, and at a minimum it needs an indexed genome, and an input
fastq. I also add options -t for multithreading (using more cores), -R for a readgroup identifier (required for
many tools), and -M for mapping split/secondary hits (not always needed). I also capture the standard out
and place it into a SAM file.

The output SAM file

@SQ - Sequence (contig/chromosome) from reference file
@PG - Program information about mapping
@RG - Read group information (we won’t have any here)

Tab delimited, each line is 1 read. Pairs will be next to each other in the file (e.g.
Line1: Read1
Line2: Read2

https://samtools.github.io/hts-specs/SAMv1.pdf

Pipeline Overview

Sample.R1.fastq

Sample.R2.fastq

genome.fa*

(genome.fa.ann
genome.fa.amb
genome.fa.pac
genome.fa.bwt
genome.fa.sa)

BWA
mem

Raw reads

Genome index

Sample.sam

samtools
view

samtools
sort

samtools
index

Sample.bam

Sample.sorted.bam

Sample.sorted.bam.bai

File format conversion

Read mapping

IGV
Visualization

Then we convert, sort, and index the bam file

Here, I’m using the | to skip the step of saving the bam file, and then sorting it.

I link the two commands together to first convert the sam into bam using samtools view, and then sorting it
using samtools sort.

I also add a multi-threading option, but samtools asks for “additional threads” so I take my thread# - 1.

The index command will create a .bai file next to the .bam file (file.bam.bai), which is needed for
downstream tools

An easier version of samtools can be found here

$ module load samtools/1.9

We will use 3 samtools operations: view, sort, and index (in that order)

$ samtools view -b <in.sam> -o <out.bam>
$ samtools view -b Sample1.sam -o Sample1.bam

$ samtools sort <in.bam> -o <out.sorted.bam>
$ samtools sort Sample1.bam -o Sample1.sorted.bam

$ samtools index <in.sorted.bam>
$ samtools index Sample1.sorted.bam

Last step, create bigWig from BAM file for coverage visualization

This is a little bonus step beyond typical mapping and conversion, which allows us
to visualize a histogram of coverage within IGV.

bamCoverage is a part of the DeepTools package.

Output files from the entire script

When the script finishes, this will be the final output.

We won’t be using the Control.BAM for any analysis, but this is an important file to have for
ChIP-seq experiments since it represents the expected background/noise, and can be subtracted
out using tools like MACS2 when doing peak calling (not covered today).

Problem Set 1

1. Edit the scripts for processing data from the heart left ventricle for POLR2A,
H3K27Ac, and ATAC-Seq.

2. Submit the jobs and ensure they can run.
a. NOTE: processing this data takes ~1.5 hours using 8 cores. So start it, make sure it runs

without errors, and continue working.

3. Go to www.encodeproject.org, find an ATAC-seq dataset in human, create a
SLURM script to download + process the data
a. Should just be repurposing the script we just used above.

4. (Optional) From www.encodeproject.org, find an ATAC-seq dataset in mouse
(Mus musculus), download it, and map it against the mouse genome.
a. Hint, mouse genome BWA index:

/cvmfs/ref.mugqic/genomes/species/Mus_musculus.GRCm38/genome/bwa_index/Mus_musculus.GRCm38.fa

http://www.encodeproject.org
http://www.encodeproject.org

Session Outline

● Lecture 1
○ Introduction to next generation sequencing data & diverse data types
○ Transcriptional cis-regulatory datasets and where to find them
○ Accessing videos and support

● Video 1 - Initialize Workshop Directory and Explore Data
● Video 2 - Map and convert data using BWA mem and Samtools; generate bigWigs with deeptools
● Mini Check-in
● Video 3 - Visualize data using IGV
● Problem sets
● Closing remarks

Checkin in...

We will briefly reconvene now. Aiming at 11:00-11:15 for this check-in.

Session Outline

● Lecture 1
○ Introduction to next generation sequencing data & diverse data types
○ Transcriptional cis-regulatory datasets and where to find them
○ Accessing videos and support

● Video 1 - Initialize Workshop Directory and Explore Data
● Video 2 - Map and convert data using BWA mem and Samtools; generate bigWigs with deeptools
● Mini Check-in
● Video 3 - Visualize data using IGV
● Problem sets
● Closing remarks

Video 3

1. Transfer files to your own computer OR mount via sshfs
a. Transfer options: FileZilla, WinSCP, scp on linux/mac

2. Download and open IGV
3. Load data in IGV
4. Zoom into a region and take a snapshot

Pipeline Overview

Sample.R1.fastq

Sample.R2.fastq

genome.fa*

(genome.fa.ann
genome.fa.amb
genome.fa.pac
genome.fa.bwt
genome.fa.sa)

BWA
mem

Raw reads

Genome index

Sample.sam

samtools
view

samtools
sort

samtools
index

Sample.bam

Sample.sorted.bam

Sample.sorted.bam.bai

File format conversion

Read mapping

IGV
Visualization

Use FileZilla, or scp to transfer files onto your own computer

Transfer the .sorted.bam,
.sorted.bam.bai, and .bw files
onto your local machine.

You can use filezilla, or
command line scp, or another
file transfer protocol/client

FileZilla:
(https://filezilla-project.org)

Host: cedar.computecanada.ca
Username: <yourUsername>
Password: <yourPassword>
Port: 22

https://filezilla-project.org

Alternatively, use sshfs/OSX-fuse (mac)

This allows your computer to mount the cedar server drive remotely, so that the
data stays on cedar but you can access it for visualization.

SSHFS/OSX-Fuse: https://osxfuse.github.io

(Don’t have the equivalent example for PC)

https://osxfuse.github.io

While transferring, download IGV

If you don’t have IGV already installed, you can download it here:

http://software.broadinstitute.org/software/igv/download

Then open IGV.

http://software.broadinstitute.org/software/igv/download

Open up IGV on your computer, load hg38.

Open up IGV on your computer, load hg38.

If Human hg38 isn’t in your drop down, click
on More…, and then scroll down to find it.

File→ Load from File: Load the .bam and .bw we just created

File→ Load from File: Load the .bam and .bw files

TIP: You do not load the .bai
file

Loaded files from the home screen...let’s zoom in!

Zoom to SPTBN1, entering into the search box

Add more data sets, modify colors and track heights, y-limits for range of values.

Problem Set 2

1. Load and visualize data from at least 2 experiments.
a. If your scripts haven’t finished running, use the files within:

/scratch/richmonp/TRAINING/JUNE2020/Files/PROCESS/

2. Color each of the BigWig tracks a different color, and set their height to 100.
3. Take a snapshot of a TSS with read pileup and the BigWig tracks, save as a

PNG.
4. (optional) Find a pileup of these signals outside of the genic regions in the

genome. Hint, these are enhancers :).
5. Email your images to phillip.a.richmond@gmail.com

mailto:phillip.a.richmond@gmail.com

End of Lecture, what to do next

Go outside and enjoy the weather

Acknowledgements

● Phil Richmond (Teacher)
○ PhD Candidate in the Wasserman Lab, enjoys teaching

● Number 1 TA
○ Da real MVP: Dr. Oriol Fornes Crepo

● WestGrid https://www.westgrid.ca/ (Alex Razoumov)
● UBC ARC https://arc.ubc.ca (Roman Baranowski, Jerry Li)

https://www.westgrid.ca/
https://arc.ubc.ca

If you cannot use sbatch to run the scripts...

You can use salloc:

salloc --account=ubcss19-wa_cpu --reservation=ubcss19-wr_cpu
--mem-per-cpu=4G --nodes=1 --cpus-per-task=8

Then, once your reservation works, you can run the scripts via:

bash <scriptName.sh>

FLASH DEBUGGING
$ samtools sort Sample1.bam -o Sample1.sorted.bam
Crazy characters printing to the screen

$ samtools view -bS Sample1.sam Sample1.bam
Crazy characters printing to the screen

$ samtools index Sample1.bam
[E::hts_idx_push] unsorted positions
samtools index: "Sample1.bam" is corrupted or unsorted

$ bwa mem -t ../GENOME/genome.fa Sample_R1.fastq
Sample_R2.fastq
[E::bwa_idx_load_from_disk] fail to locate the index files

Fix: This sort command doesn’t use a -o
Unless you specify -T and -O as well.
$ samtools sort Sample1.bam Sample1.sorted

Fix: This commands needs a -o for the output
$ samtools view -bS Sample1.sam -o Sample1.bam

Fix: Order matters. Sort before you index
$ samtools index Sample1.sorted.bam

Fix: the -t option requires an integer. Otherwise, all the
other positional arguments are out of place.
$ bwa mem -t 4 ../GENOME/genome.fa Sample_R1.fastq
Sample_R2.fastq

Fix: Make sure you load the .bam file,
The .bai file just needs to be in the same directory
As the .bam file

